lunes, 10 de diciembre de 2012

El Teorema de Pitagoras

Pitágoras de Samos (en griego antiguo Πυθαγόρας) (ca. 580 a. C. – ca. 495 a. C.) fue un filósofo y matemático griego considerado el primer matemático puro. Contribuyó de manera significativa en el avance de la matemática helénica, la geometría y la aritmética, derivadas particularmente de las relaciones numéricas, y aplicadas por ejemplo a la teoría de pesos y medidas, a la teoría de la música o a la astronomía. Es el fundador de la Hermandad Pitagórica, una sociedad que, si bien era de naturaleza predominantemente religiosa, se interesaba también en medicina, cosmología, filosofía, ética y política, entre otras disciplinas. El pitagorismo formuló principios que influyeron tanto en Platón como en Aristóteles y, de manera más general, en el posterior desarrollo de la matemática y en la filosofía racional en Occidente. No se conserva ningún escrito original de Pitágoras. Sus discípulos -los pitagóricos- invariablemente justificaban sus doctrinas citando la autoridad del maestro de forma indiscriminada, por lo que resulta difícil distinguir entre los hallazgos de Pitágoras y los de sus seguidores. Se le atribuye a Pitágoras la teoría de la significación funcional de los números en el mundo objetivo y en la música; otros descubrimientos, como la inconmensurabilidad del lado y la diagonal del cuadrado o el teorema de Pitágoras para los triángulos rectángulos, fueron probablemente desarrollados por la escuela pitagórica.


El Teorema de Pitágoras establece que en todo triángulo rectángulo, el cuadrado de la hipotenusa (el lado de mayor longitud del triángulo rectángulo) es igual a la suma de los cuadrados de los catetos (los dos lados menores del triángulo, los que conforman el ángulo recto).

El Teorema de Pitágoras lleva este nombre porque su descubrimiento recae sobre la escuela pitagórica. Anteriormente, en Mesopotamia y el Antiguo Egipto se conocían ternas de valores que se correspondían con los lados de un triángulo rectángulo, y se utilizaban para resolver problemas referentes a los citados triángulos, tal como se indica en algunas tablillas y papiros. Sin embargo, no ha perdurado ningún documento que exponga teóricamente su relación. La pirámide de Kefrén, datada en el siglo XXVI a. C., fue la primera gran pirámide que se construyó basándose en el llamado triángulo sagrado egipcio, de proporciones 3-4-5. 

El Teorema de Pitágoras es de los que cuenta con un mayor número de demostraciones diferentes, utilizando métodos muy diversos. Una de las causas de esto es que en la Edad Media se exigía una nueva demostración del teorema para alcanzar el grado de Magíster matheseos. Algunos autores proponen hasta más de mil demostraciones. Otros autores, como el matemático estadounidense E. S. Loomis, catalogó 367 pruebas diferentes en su libro de 1927 The Pythagorean Proposition. En ese mismo libro, Loomis clasificaría las demostraciones en cuatro grandes grupos: las algebraicas, donde se relacionan los lados y segmentos del triángulo; geométricas, en las que se realizan comparaciones de áreas; dinámicas a través de las propiedades de fuerza, masa; y las cuaterniónicas, mediante el uso de vectores.


Sin embargo, lo que vamos a tratar en este artículo son las distintas demostraciones que ha habido del Teorema de Pitágoras, ya que fueron muchos los matemáticos que demostraron, de distintas formas este famoso teorema. Veamos cuales son las demostraciones más conocidas del teorema de Pitágoras, sin profundizar en ellas, ya que en publicaciones posteriores ahondaremos en cada una de ellas y las explicaremos con detalle.

Demostraciones supuestas del propio Pitágoras

Demostración de Euclides

 Demostración de Pappus

Demostración de Bhaskara

Demostración de Garfield 

Demostración de Leonardo Da Vinci


Este es simplemente un listado de las demostraciones más famosas del teorema de Pitágoras. A medida que sigamos ampliando nuestra web iremos incluyendo información sobre cada una de estas demostraciones, explicando y desarrollando cada una de ellas, enlazando desde este artículo a los artículos de cada una de ellas. En cualquier caso, si necesitáis el desarrollo de alguna de estas demostraciones del teorema de Pitágoras no tenéis más que dejarnos un comentario al final de esta publicación y la añadiremos a la mayor brevedad.

Demostración de Leonardo da Vinci 

El diseño inicial, con el triángulo y los cuadrados de catetos e hipotenusa, es modificado por Leonardo da Vinci al añadir dos triángulos iguales al ABC: el ECF y el HIJ. En el elenco de inteligencias que abordaron el teorema de Pitágoras no falta el genio del Renacimiento, Leonardo da Vinci. Partiendo del triángulo rectángulo ABC con los cuadrados de catetos e hipotenusa, Leonardo añade los triángulos ECF y HIJ, iguales al dado, resultando dos polígonos, cuyas superficies va a demostrar que son equivalentes: Polígono ADEFGB: la línea DG lo divide en dos mitades idénticas, ADGB y DEFG. Polígono ACBHIJ: la línea CI determina CBHI y CIJA. Comparemos los polígonos destacados en gris, ADGB y CIJA: De inmediato vemos que tienen tres lados iguales: AD=AC, AB=AJ, BG=BC=IJ Asimismo es inmediata la igualdad entre los ángulos de los siguientes vértices: A de ADGB y A de CIJA B de ADGB y J de CIJA Se concluye que ADGB y CIJA son iguales. De modo análogo se comprueba la igualdad entre ADGB y CBHI. Además, de un modo semejante a lo explicado en la demostración de Euclides, nótese que un giro de centro A, y sentido positivo, transforma CIJA en ADGB. Mientras que un giro de centro B, y sentido negativo, transforma CBHI en ADGB. Todo ello nos lleva a que los polígonos ADEFGB y ACBHIJ tienen áreas equivalentes. Pues bien, si a cada uno le quitamos sus dos triángulos –iguales- las superficies que restan forzosamente serán iguales. Y esas superficies no son sino los dos cuadrados de los catetos en el polígono ADEFGB, por una parte, y el cuadrado de la hipotenusa en el polígono ACBHIJ, por la otra. El teorema de Pitágoras queda demostrado.

Fuente1: Wikipedia
Fuente 2:  teoremadepitagoras.net

1 comentario:

  1. me parece interesante su información, me gustaría que explicaran la Demostración de Bhaskara . se lo agradecería bastante

    ResponderEliminar